6.6 Divergence operator in general coordinates (ψ,πœƒ,ΞΆ)

To calculate the divergence of a vector, it is desired that the vector should be in the contravariant form because we can make use of the fact:

βˆ‡ β‹…(βˆ‡ Ξ±Γ— βˆ‡ Ξ²) = 0,
(107)

for any scalar quantities Ξ± and Ξ². Therefore we write vector A as

A = A(ψ)π’₯βˆ‡ πœƒΓ— βˆ‡ ΞΆ + A(πœƒ)π’₯ βˆ‡ ΞΆ Γ— βˆ‡ ψ+ A (ΞΆ)π’₯βˆ‡ ψ Γ— βˆ‡πœƒ,
(108)

where A(ψ) = A β‹…βˆ‡Οˆ, A(πœƒ) = A β‹…βˆ‡πœƒ, A(ΞΆ) = A β‹…βˆ‡ΞΆ. Β Β Then the divergence of A is readily calculated as

                      (ψ)                   (πœƒ)                  (ΞΆ)
βˆ‡  β‹…A  = (βˆ‡ πœƒ(Γ— βˆ‡ ΞΆ)β‹…βˆ‡ (A   π’₯ )+ (βˆ‡ ΞΆ Γ— βˆ‡ ψ))β‹…βˆ‡ (A π’₯ )+ (βˆ‡Οˆ Γ— βˆ‡πœƒ) β‹…βˆ‡(A  π’₯ ) (109)
      = 1-  βˆ‚A(ψ)π’₯-+ βˆ‚A-(πœƒ)π’₯-+ βˆ‚A-(ΞΆ)π’₯- ,                               (110)
        π’₯     βˆ‚Οˆ       βˆ‚πœƒ       βˆ‚ΞΆ
where the second equality is obtained by using Eqs. (103), (104), and (105).