10.8 Covariant form of magnetic field in (ψ,πœƒ,ΞΆ) coordinate system

In the above, we have obtained the covariant form of the magnetic field in (ψ,πœƒ,Ο•) coordinates (i.e., Eq. (154)). Next, we derive the corresponding form in (ψ,πœƒ,ΞΆ) coordinate. In order to do this, we need to express the βˆ‡Ο• basis vector in terms of βˆ‡Οˆ, βˆ‡πœƒ, and βˆ‡ΞΆ basis vectors. Using the definition of the generalized toroidal angle, we obtain

gβˆ‡ Ο• = gβˆ‡ (ΞΆ + qΞ΄)

    = gβˆ‡ ΞΆ + gqβˆ‡(Ξ΄+ gΞ΄βˆ‡q     )
    = gβˆ‡ ΞΆ + gq βˆ‚Ξ΄-βˆ‡Οˆ + βˆ‚Ξ΄-βˆ‡πœƒ  + gΞ΄qβ€²βˆ‡ ψ
                βˆ‚Οˆ      βˆ‚πœƒ
      (   βˆ‚Ξ΄      β€²)        βˆ‚Ξ΄
    =   gqβˆ‚Οˆ-+ gΞ΄q  βˆ‡ ψ+ gqβˆ‚πœƒ-βˆ‡πœƒ + gβˆ‡ ΞΆ

    = g βˆ‚(qΞ΄)βˆ‡ ψ + gq βˆ‚Ξ΄βˆ‡ πœƒ+ gβˆ‡ΞΆ.                        (280)
         βˆ‚Οˆ         βˆ‚πœƒ
Using Eq. (280), the covariant form of the magnetic field, Eq. (154), is written as
     (  π’₯            βˆ‚(qΞ΄))      (  βˆ‚Ξ΄     π’₯      )
B =   Ξ¨β€²--2βˆ‡Οˆ β‹…βˆ‡πœƒ + g----- βˆ‡ ψ +  gq---βˆ’ Ξ¨β€²-2|βˆ‡Οˆ |2  βˆ‡πœƒ + gβˆ‡ΞΆ.
        R             βˆ‚Οˆ            βˆ‚πœƒ     R
(281)

This expression can be further simplified by using equation (252) to eliminate βˆ‚Ξ΄βˆ•βˆ‚πœƒ, which gives

     (  π’₯            βˆ‚(qΞ΄))      (  g2    R2          ) π’₯
B  =  Ξ¨β€²--2βˆ‡Οˆ β‹…βˆ‡ πœƒ+ g----- βˆ‡ ψ +  βˆ’ -β€² βˆ’ gq--βˆ’ Ξ¨ β€²|βˆ‡Οˆ |2  -2βˆ‡ πœƒ+ gβˆ‡ ΞΆ
     (  R             βˆ‚Οˆ  )      (  Ξ¨      π’₯        )   R
   =  Ξ¨β€² π’₯-βˆ‡Οˆ β‹…βˆ‡ πœƒ+ gβˆ‚(qΞ΄) βˆ‡ ψ +  βˆ’ g2 +-|βˆ‡-Ξ¨|2βˆ’ gqR2  π’₯-βˆ‡ πœƒ+ gβˆ‡ ΞΆ.   (282)
        R2            βˆ‚Οˆ               Ξ¨ β€²        π’₯   R2
Using B2 = (|βˆ‡Ξ¨|2 + g2)βˆ•R2, the above equation is written as
    (                    )      (              )
B =  Ξ¨β€²-π’₯-βˆ‡Οˆ β‹…βˆ‡ πœƒ+ gβˆ‚(qΞ΄) βˆ‡ ψ +  βˆ’ B2R2-βˆ’ gqR2-  π’₯-βˆ‡ πœƒ+ gβˆ‡ ΞΆ
       R2            βˆ‚Οˆ             Ξ¨ β€²      π’₯   R2
    ( β€² π’₯           βˆ‚(qΞ΄))      (  B2      )
  =  Ξ¨ R2-βˆ‡Οˆ β‹…βˆ‡ πœƒ+ g-βˆ‚Οˆ-- βˆ‡ ψ +  βˆ’ Ξ¨β€² π’₯ βˆ’ gq βˆ‡ πœƒ+ gβˆ‡ΞΆ.           (283)
Equation (283) is the covariant form of the magnetic field in (ψ,πœƒ,ΞΆ) coordinate system. For the particular choice of the radial coordinate ψ = βˆ’Ξ¨ and the Jacobian π’₯ = h(ψ)βˆ•B2 (i.e., Boozer’s Jacobian, discussed in Sec. 10.9), equation (283) reduces to
    (   π’₯           βˆ‚(qΞ΄))
B =   βˆ’--2βˆ‡Οˆ β‹…βˆ‡ πœƒ+ g----- βˆ‡ ψ + I(ψ )βˆ‡ πœƒ+ g(ψ)βˆ‡ ΞΆ,
       R             βˆ‚Οˆ
(284)

with I(ψ) = h(ψ) βˆ’ gq. The magnetic field expression in Eq. (284) frequently appears in tokamak literature[28]. In this form, the coefficients before both βˆ‡πœƒ and βˆ‡ΞΆ depends on only the radial coordinate. In terms of I(ψ), the Jabobian can also be written as

π’₯  = gq+-I.
      B2
(285)