A.14 Grad-Shafranov equation in (r,πœƒ,Ο•) coordinates

Definition of (r,πœƒ,Ο•) coordinates

Define (r,πœƒ,Ο•) coordinates by

R = R0 + rcosπœƒ,
(574)

Z = rsin πœƒ,
(575)

where (R,Ο•,Z) are the cylindrical coordinates and R0 is a constant. The above transformation is shown graphically in Fig. 40.


pict

Fig. 40: The relation between coordinates (r,πœƒ) and (R,Z).

The Jacobian of (r,πœƒ,Ο•) coordinates can be calculated using the definition. Using x = R cosΟ•, y = R sinΟ•, and z = Z, the Jacobian (with respect to the Cartesian coordinates (x,y,z)) is written as

    |        |  |                   |
    ||βˆ‚βˆ‚xr βˆ‚βˆ‚xπœƒ βˆ‚βˆ‚xΟ•||  ||βˆ‚Rβˆ‚corsΟ• βˆ‚Rcβˆ‚oπœƒsΟ•-βˆ‚Rβˆ‚coΟ•sΟ•||
π’₯ = ||βˆ‚y βˆ‚y βˆ‚y||= ||βˆ‚R-sinΟ• βˆ‚RsinΟ•-βˆ‚R-sinΟ•||
    ||βˆ‚βˆ‚rz βˆ‚βˆ‚πœƒz βˆ‚βˆ‚Ο•z||  ||  βˆ‚βˆ‚rZ-    βˆ‚βˆ‚Zπœƒ-   βˆ‚βˆ‚Ο•Z- ||
    |βˆ‚r βˆ‚πœƒ βˆ‚Ο•      βˆ‚r     βˆ‚πœƒ    βˆ‚|Ο•
    ||cosπœƒcosΟ• βˆ’ rsinπœƒcosΟ• βˆ’ R sin Ο•||
  = ||cosπœƒsinΟ• βˆ’ rsinπœƒsinΟ• R cosΟ• ||
    |  sinπœƒ     r cos πœƒ      0   |
  = sin πœƒ(βˆ’ Rr sinπœƒ cos2Ο• βˆ’ Rrsinπœƒsin2Ο•)
  + rcosπœƒ(βˆ’ R sin2 Ο•cosπœƒβˆ’ R cos2Ο•cosπœƒ)
           2        2
  = βˆ’ Rrsin πœƒβˆ’ Rr cosπœƒ
  = βˆ’ Rr.                                             (576)
Toroidal elliptic operator Δ⋆Ψ in (r,πœƒ,Ο•) coordinate system

Next, we transform the GS equation from (R,Z) coordinates to (r,πœƒ) coordinates. Using the relations R = R0 + r cosπœƒ and Z = r sinπœƒ, we have

    ∘--------------   βˆ‚r   Z
r =  (R βˆ’ R0)2 + Z2 β‡’ ---= --= sinπœƒ
                      βˆ‚Z    r
(577)

      -------Z-------        βˆ‚πœƒ-  rβˆ’-Z-Zr-
sin πœƒ = ∘ (R-βˆ’-R-)2 +-Z2-β‡’ cosπœƒ βˆ‚Z =  r2   .
              0
(578)

   βˆ‚πœƒ     rβˆ’ ZZ-    1βˆ’ sin2 πœƒ   cos2πœƒ
β‡’  βˆ‚Z-= r(R-βˆ’-Rr) = -R-βˆ’-R--=  R-βˆ’ R--
               0          0         0
(579)

βˆ‚ sinπœƒ   r βˆ’ ZZ-   1βˆ’ sin2πœƒ   cos2πœƒ
------= ---2-r-=  --------= -----
  βˆ‚Z       r         r        r
(580)

The GS equation in (R,Z) coordinates is given by

 2         (     )
βˆ‚-Ξ¨2 + R βˆ‚- -1βˆ‚-Ξ¨  = βˆ’ ΞΌ0R2dP-βˆ’ -dgg(Ξ¨).
βˆ‚Z      βˆ‚R  R βˆ‚R           dΞ¨   dΞ¨
(581)

The term βˆ‚Ξ¨βˆ•βˆ‚Z is written as

βˆ‚ Ξ¨   βˆ‚Ξ¨ βˆ‚r   βˆ‚Ξ¨ βˆ‚ πœƒ
--- = ------+ ------
βˆ‚Z    βˆ‚r βˆ‚Z    βˆ‚πœƒβˆ‚Z  2
    = βˆ‚Ξ¨-sin πœƒ+ βˆ‚Ξ¨--cos-πœƒ.                       (582)
      βˆ‚r       βˆ‚ πœƒR βˆ’ R0
Using Eq. (582), βˆ‚2Ξ¨βˆ•βˆ‚Z2 is written as
βˆ‚2Ξ¨    βˆ‚ ( βˆ‚Ξ¨     )   βˆ‚  (βˆ‚Ξ¨  cos2 πœƒ )
--2-= ---  ---sin πœƒ +  --- ----------
βˆ‚Z    βˆ‚Z   βˆ‚r(   )    βˆ‚Z  βˆ‚ πœƒR βˆ’ R0         (    )         (       )
    = sin πœƒ βˆ‚-  βˆ‚Ξ¨- + βˆ‚Ξ¨--βˆ‚-(sinπœƒ)+  cos2πœƒ--βˆ‚-  βˆ‚Ξ¨- +  βˆ‚Ξ¨-βˆ‚-  -cos2-πœƒ-
          βˆ‚Z   βˆ‚r    βˆ‚r βˆ‚Z         Rβˆ’ R0 βˆ‚Z   βˆ‚πœƒ     βˆ‚πœƒβˆ‚Z   R βˆ’ R0
          (βˆ‚2Ξ¨        βˆ‚2Ξ¨  cos2 πœƒ)   βˆ‚Ξ¨ cos2πœƒ   cos2πœƒ ( βˆ‚2Ξ¨        βˆ‚2Ξ¨ cos2πœƒ )
    = sin πœƒ -βˆ‚r2 sinπœƒ+ βˆ‚rβˆ‚πœƒR-βˆ’-R0- + -βˆ‚r--r-- + R-βˆ’-R0- βˆ‚πœƒβˆ‚r-sinπœƒ + βˆ‚πœƒ2-R-βˆ’ R0-
                            2
    βˆ’ βˆ‚Ξ¨----1--2 cosπœƒsin πœƒ cos-πœƒ-                                          (583)
      βˆ‚ πœƒR βˆ’ R0          R βˆ’ R0
         ∘ --------------
-βˆ‚r = -βˆ‚-  (R βˆ’ R0)2 + Z2 = R-βˆ’-R0-= cosπœƒ
βˆ‚R    βˆ‚R                     r
(584)

sinπœƒ = ∘------Z--------
  (R βˆ’ R0)2 + Z2.

cosπœƒβˆ‚πœƒ
---
βˆ‚R = βˆ’ZR βˆ’ R
---3-0-
  r

βˆ‚πœƒ-= βˆ’ Z-.
βˆ‚R     r2
(585)

cosπœƒ =     R βˆ’ R0
∘--------2----2-
  (R βˆ’ R0 ) +Z

 βˆ‚        rβˆ’ Rβˆ’R0(R βˆ’ R0)   1βˆ’ cos2πœƒ   sin2πœƒ
---cosπœƒ = -----r-2--------= -------- = -----
βˆ‚R              r               r        r
(586)

     (     )        [  (               )]
R-βˆ‚-  1-βˆ‚Ξ¨-  = R βˆ‚-- 1-  βˆ‚Ξ¨-βˆ‚r-+ βˆ‚Ξ¨-βˆ‚πœƒ-
 βˆ‚R   R βˆ‚R       βˆ‚R [R ( βˆ‚r βˆ‚R   βˆ‚πœƒ βˆ‚R )]
             = R βˆ‚-- 1-  βˆ‚Ξ¨-cosπœƒ βˆ’ βˆ‚Ξ¨-Z-
                 βˆ‚R  R   βˆ‚r       βˆ‚πœƒ r2
                βˆ‚ ( βˆ‚Ξ¨       βˆ‚Ξ¨ Z )     (βˆ‚Ξ¨        βˆ‚Ξ¨ Z )(   1 )
             = βˆ‚R-  βˆ‚r-cosπœƒβˆ’ -βˆ‚πœƒr2  + R  -βˆ‚r cosπœƒ βˆ’ βˆ‚πœƒ-r2  βˆ’ R2-
               (  2        2     )                   (  2         2     )           (   )     (               )
             =   βˆ‚-Ξ¨2-βˆ‚r + βˆ‚-Ξ¨--βˆ‚πœƒ  cosπœƒ+ βˆ‚Ξ¨--βˆ‚-cosπœƒβˆ’   βˆ‚-Ξ¨--βˆ‚r-+ βˆ‚-Ξ¨2-βˆ‚πœƒ- -Z2 βˆ’ βˆ‚Ξ¨--βˆ‚-  Z2  βˆ’ 1- βˆ‚Ξ¨-cosπœƒ βˆ’ βˆ‚Ξ¨-Z2
               ( βˆ‚r βˆ‚R    βˆ‚rβˆ‚πœƒβˆ‚R )       βˆ‚r βˆ‚R     (   βˆ‚πœƒβˆ‚r βˆ‚R   βˆ‚πœƒ  βˆ‚R)  r    βˆ‚πœƒ βˆ‚R   r     R(   βˆ‚r       βˆ‚πœƒ r)
                 βˆ‚2Ξ¨-      βˆ‚2Ξ¨--Z        βˆ‚-Ξ¨sin2πœƒ    βˆ‚2Ξ¨--      βˆ‚2Ξ¨-Z-  Z-  βˆ‚Ξ¨-  1-       -1  βˆ‚Ξ¨-      βˆ‚-Ξ¨-Z
             =   βˆ‚r2 cosπœƒ βˆ’ βˆ‚rβˆ‚πœƒr2 cosπœƒ+  βˆ‚r  r  βˆ’   βˆ‚πœƒβˆ‚r cos πœƒβˆ’ βˆ‚πœƒ2 r2  r2 + βˆ‚πœƒZ r32cosπœƒβˆ’ R   βˆ‚r cosπœƒβˆ’  βˆ‚πœƒr2
               βˆ‚2Ξ¨        βˆ‚2Ξ¨ sin2 πœƒ    βˆ‚2Ξ¨ Z       βˆ‚ Ξ¨sin2πœƒ   βˆ‚Ξ¨  1
             = --2-cos2πœƒ+ ---2--2--βˆ’ 2------2 cosπœƒ+-------- + --Z -32cosπœƒ                                  (587)
               βˆ‚r(        βˆ‚ πœƒ  r    ) βˆ‚rβˆ‚πœƒ r        βˆ‚r  r     βˆ‚πœƒ  r
             βˆ’ 1-  βˆ‚Ξ¨-cosπœƒβˆ’ βˆ‚Ξ¨-1 sinπœƒ                                                                       (588)
               R   βˆ‚r       βˆ‚ πœƒr
Summing the the right-hand-side of Eq. (583) and the expression on line (587) yields
βˆ‚2Ξ¨-  βˆ‚Ξ¨-1   1-βˆ‚2Ξ¨-
βˆ‚r2 +  βˆ‚rr + r2βˆ‚ πœƒ2 .
(589)

Using these, the GS equation is written as

βˆ‚2Ξ¨-
 βˆ‚r2+βˆ‚Ξ¨-
βˆ‚r1
r+-1
r2βˆ‚2Ξ¨-
 βˆ‚πœƒ2βˆ’----1-----
R0 + rcosπœƒ(                  )
  βˆ‚Ξ¨-      βˆ‚Ξ¨-1
  βˆ‚r cosπœƒβˆ’ βˆ‚πœƒ r sinπœƒ = βˆ’ΞΌ0(R0+r cosπœƒ)2dP-
dΞ¨βˆ’dg-
dΨg(Ψ),

which can be arranged in the form

(              2)              (                   )
 1 βˆ‚-r-βˆ‚-+ 1--βˆ‚-  Ξ¨βˆ’ -----1----  βˆ‚Ξ¨-cosπœƒβˆ’ βˆ‚-Ξ¨1 sin πœƒ = βˆ’ ΞΌ0(R0+r cos πœƒ)2dP-βˆ’ dgg(Ξ¨),
 r βˆ‚r βˆ‚r   r2βˆ‚πœƒ2     R0 + rcosπœƒ  βˆ‚r        βˆ‚πœƒr                       dΞ¨   dΞ¨
(590)

which agrees with Eq. (3.6.2) in Wessson’s book[27], where f is defined by f = RBΟ•βˆ•ΞΌ0, which is different from g ≑ RBΟ• by a 1βˆ•ΞΌ0 factor.