H Transform gyrokinetic equation from (X,μ,𝜀,α) to (X,μ,v) coordinates

The gyrokinetic equation given above is written in terms of variables (X,μ,𝜀,α). Next, we transform it into coordinates (X,v) which are defined by

(    ′
||{  X′(X,μ,𝜀,α) = X
   μ′(X, μ,𝜀,α) = μ
||(  α (X, μ,𝜀,α) = α ∘-------------
   v∥(X, μ,𝜀,α) = ±  2(𝜀 − μB0 (X))
(369)

Use this definition and the chain rule, we obtain

   ||           ′          ′      ∂v         ′
∂--||     =  ∂X--⋅ -∂′-+ ∂μ--∂′ + --∥-∂-+  ∂α--∂′
∂X μ,𝜀,α      ∂X   ∂X    ∂X ∂μ    ∂X ∂v∥   ∂X ∂α
            --∂-   μ-∂B0--∂-
         =  ∂X ′ − v∥ ∂X  ∂v∥,                              (370)
and
 ∂ ||         ∂X ′ ∂    ∂μ′ ∂    ∂v∥ ∂    ∂α′ ∂
∂-𝜀||     =   -∂𝜀-∂X-′ + ∂𝜀-∂μ′ + ∂𝜀-∂v + ∂𝜀-∂α′
   X,μ,α                              ∥
         =   1--∂-.                                        (371)
             v∥∂v∥
Then, in terms of (X,v), equation (136) is written
[                          ]
 ∂-+ (v∥e∥ + VD +δVD ) ⋅-∂-- δG0 − (v∥e∥ + VD + δVD )⋅ μ-∂B0-∂δG0-
 ∂t      (              ∂X′)                          v∥∂X  ∂v∥
          ∂F0-  -μ ∂B0∂F0-    q-∂⟨δL⟩α∂F0-1-
= − δVD ⋅ ∂X ′ − v∥ ∂X ∂v∥  − m   ∂t  ∂v∥ v∥,                    (372)
Dropping terms of order higher than O(λ2), equation (372) is written as
[                           ]
  ∂-                    -∂--           ∂B0-∂δG0-
  ∂t + (v∥e∥ + VD + δVD )⋅∂X ′ δG0 − e∥ ⋅μ ∂X ∂v∥
         ( ∂F )   (       ∂B     q∂ ⟨δL ⟩ ) ∂F  1
= − δVD ⋅  --0′ +  δVD  ⋅μ---0− -------α   --0--,         (373)
           ∂X             ∂X    m    ∂t    ∂v∥v∥
The above equation drops all terms higher than O(λ2) and as a result the coefficient before ∂δf∕∂v contains only the mirror force, i.e., eμB0, which is independent of any perturbations.

Note that the gyro-averaging operator in (X,v) coordinates is identical to that in the old coordinates since the perpendicular velocity variable μ is identical between the two coordinate systems. Also note that the perturbed guiding-center velocity δVD is given by

       e∥-×∇X-⟨δϕ⟩α     ⟨δB-⊥⟩α-
δVD  =      B0      + v∥  B0  ,
(374)

where ∂∕∂X (rather than ∂∕∂X) is used. Since δϕ(x) = δϕg(X), which is independent of v, then Eq. (370) indicates that ∂δϕ∕∂X = ∂δϕ∕∂X.

Following the same procedures, equation (141) in terms of (X,v) is written as

[                          ]
 ∂-+ (v e + V   +δV  ) ⋅-∂-- δf − e ⋅μ∇B  ∂δf-
 ∂t    ∥ ∥    D     D   ∂X ′      ∥     0 ∂v∥
         (∂F0 )             ∂F0 1
= − δVD ⋅ ∂X-′  +δVD  ⋅μ∇B0 ∂v--v-
    [             (           ∥  ∥     )          ]
−-q  − ∂⟨v-⋅δA⟩α − v∥e∥ + VD + v∥ ⟨δB-⊥⟩α- ⋅∇X ⟨δϕ⟩α  ∂F0-1-.    (375)
 m        ∂t                       B0              ∂v∥ v∥
next, try to recover the equation in Mishchenk’s paper:
[                           ]
  ∂-+ (v e + V  + δV  )⋅-∂-- δf − e ⋅μ∇B  ∂δf-
  ∂t    ∥ ∥   D      D  ∂X ′       ∥     0∂v∥
         ( ∂F0)              ∂F0 1
= − δVD ⋅  ∂X-′ + δVD ⋅μ ∇B0 ∂v-v-
    [           (              ∥ ∥ )         ]
− q- − ∂⟨δA∥⟩α −  e∥ + VD-+ ⟨δB⊥-⟩α-  ⋅∇X  ⟨δϕ⟩α  ∂F0.
  m       ∂t           v∥     B0               ∂v∥
δL = δΦ v δA,
δVD       q                  e∥
-v-- = −mv--∇X ⟨δΦ − v∥A ∥⟩α × Ω-.
  ∥        ∥
(376)

q-
m[           (                         )          ]
 − ∂⟨δA-∥⟩α-−   e + VD--+ q-∇  ⟨A  ⟩ × e∥  ⋅∇  ⟨δϕ⟩
     ∂t        ∥   v∥    m  X   ∥α   Ω      X    α∂F0-
∂v∥.

q
m-[                                              ]
   ∂⟨δA ∥(h)⟩α  ( VD    q           e∥)
 − ---∂t----−   -v--+ m-∇X ⟨A ∥⟩α × Ω-  ⋅∇X ⟨δϕ⟩α
                 ∥∂F0
∂v--
  ∥.

 

H.1 Recover equation in W. Deng’s 2011 NF paper

The guiding-center velocity in the equilibrium field is given by

            B⋆       μ               1
v∥e∥ + VD = --0⋆-v∥ +---⋆-B0 × ∇B0 + ----⋆-E0 × B0
           B ∥0    ΩB ∥0           B0B ∥0
(377)

where

 ⋆          v∥
B0 = B0 + B0 Ω-∇ × b,
(378)

               (             )
B ⋆∥ ≡ b ⋅B⋆ = B 1+ v∥b ⋅∇ × b ,
                   Ω
(379)

Using B0 B0, then expression (377) is written as

                   2
ve  + V  = v b +  v∥∇ × b + --μ-B  × ∇B  + -1-E  × B ,
 ∥ ∥   D    ∥     Ω◟--◝◜--◞   ΩB0---0-----0  B20 0    0
                 curvaturedrift ◟   ∇B◝◜drift  ◞  ◟-E×◝B◜drift◞
(380)

where the curvature drift, B drift, and E0 × B0 drift can be identified. Note that the perturbed guiding-center velocity δVD is given by (refer to Sec. C.3)

       e∥-×∇X-⟨δϕ⟩α     ⟨δB-⊥⟩α-
δVD  =      B0      + v∥  B0  .
(381)

Using the above results, equation (375) is written as

[                          ]
 ∂-+ (v e + V  + δV  )⋅ -∂--δf − e ⋅μ∇B  ∂δf-
 ∂t    ∥ ∥    D     D   ∂X′       ∥     0∂v ∥
        ( ∂F0 )  ( e∥ × ∇X ⟨δϕ⟩α   ⟨δB ⊥⟩α)  ( μ    ∂F0 )
= − δVD ⋅ ∂X-′ +   -----B------+ v∥--B----  ⋅ v-∇B0 -∂v-
    [             (      02            0       ∥       ∥               )         ]
 -q   ∂⟨v-⋅δA⟩α          v∥        -μ--           -1-           ⟨δB-⊥⟩α            ∂F0-1
−m   −    ∂t    −  v∥e∥ + Ω ∇ ×b + ΩB0 B0 × ∇B0 + B20E0 × B0 + v∥ B0     ⋅∇X ⟨δϕ⟩α  ∂v(∥3v8∥2,)
Collecting coefficients before ∂F0∕∂v, we find that the two terms involving B0 (terms in blue and red) cancel each other, yielding
[                          ]
 ∂-                     -∂--             ∂δf-
 ∂t + (v∥e∥ + VD + δVD )⋅ ∂X′ δf − e∥ ⋅μ∇B0 ∂v ∥
        ( ∂F )
= − δVD ⋅ --0-
    [     ∂X                         (                                     )         ]
 -q  m-  ⟨δB-⊥⟩α-          ∂⟨v⋅δA-⟩α         v2∥        -1-           ⟨δB⊥-⟩α-            ∂F0-1
+m   q v∥  B0   ⋅(μ ∇B0) +    ∂t    +   v∥b + Ω ∇ × b + B20 E0 × B0 + v∥ B0     ⋅∇X  ⟨δϕ⟩α  ∂v∥(v3∥8,3)
This equation agrees with Eq. (8) in I. Holod’s 2009 pop paper (gyro-averaging is wrongly omitted in that paper) and W. Deng’s 2011 NF paper.