I Drift-kinetic limit

In the drift-kinetic limit, vδEα = 0, δBvα = 0, and δhα = δh, where δh is an arbitrary field quantity. Using these, gyrokinetic equation (334) is written as

[     (                      )     ]
 -∂ +  v∥e∥ + vD + vE + v∥δB⊥  ⋅∇X  δf
 ∂t (           )         B0 [(                 )    ]
= −  v  + v δB-⊥  ⋅∇  F  − q-  v e + v  + v δB-⊥  ⋅δE  ∂F0.    (384)
       E   ∥ B0      X 0   m    ∥ ∥   D    ∥ B0        ∂ 𝜀

I.1 Linear case

Neglecting the nonlinear terms, drift-kinetic equation (384) is written

[                   ]
 ∂-
 ∂t +(v∥e∥ + vD )⋅∇X δf
    (       δB  )          q               ∂F
= −  vE + v∥--⊥-  ⋅∇XF0 − --[(v∥e∥ +vD )⋅δE]---0.         (385)
             B0           m                 ∂𝜀
Next let us derive the parallel momentum equation from the linear drift kinetic equation (this is needed in my simulation). Multiplying the linear drift kinetic equation (385) by qv and then integrating over velocity space, we obtain
            ∫
∂δj∥  =  − q  dvv (ve  + v )⋅∇  δf
 ∂t              ∥(  ∥∥    D  ) X
          ∫              δB⊥-          -q  ∫                    ∂F0-
      −  q  dvv ∥ vE + v∥ B0   ⋅∇XF0 − m q   dvv∥[(v∥e∥ + vD )⋅δE]∂𝜀 . (386)
Equation (386) involve Xδf and this should be avoided in particle methods whose goal is to avoid directly evaluating the derivatives of δf over phase-space coordinates. On the other hand, the partial derivatives of velocity moment of δf are allowed. Therefore, we would like to make the velocity integration of δf appear. Note that Xδf here is taken by holding (𝜀,μ) constant and thus v is not a constant and thus can not be moved inside X. Next, to facilitate performing the integration over v, we transform the linear drift kinetic equation (385) into variable (X,μ,v).

I.2 Transform from (X,μ,𝜀) to (X,μ,v) coordinates

The kinetic equation given above is written in terms of variable (X,μ,𝜀). Next, we transform it into coordinates (X,v) which is defined by

 ′
X (X,μ,𝜀) = X,
(387)

 ′
μ (X,μ,𝜀) = μ,
(388)

and

v(X, μ,𝜀) = ∘2-(𝜀-−-μB-(X-)).
 ∥                  0
(389)

Use this, we have

                ′         ′
∂δG0-|μ,𝜀 =   ∂X--∂δG0-+ ∂μ-∂δG0-+ ∂v∥ ∂δG0-
 ∂X          ∂X  ∂X ′   ∂X  ∂μ′    ∂X  ∂v∥
             ∂δG0-       ∂δG0-  μ-∂B0-∂δG0-
         =    ∂X′ |μ,v∥ + 0 ∂μ′ − v∥ dX  ∂v∥ ,             (390)
and
∂F0      ∂F0 ∂μ′  ∂F0 ∂v∥
-∂𝜀-  =  ∂μ-′∂𝜀-+ -∂v--∂𝜀
                     ∥
      =  0∂F0-+ ∂F0-∂v∥
          ∂μ ′  ∂v∥ ∂𝜀
         ∂F0-1-
      =  ∂v∥ v∥                                 (391)
Then, in terms of variable (X,μ,v), equation (385) is written
∂δf-+ (v e + v  )⋅∇ δf − e ⋅μ∇B ∂δf-
 ∂t    ∥ ∥    D         ∥      ∂v∥
   (        δB⊥ )       ( vE   δB ⊥)       ∂F0   q [(     vD)     ] ∂F0
= −  vE + v∥B---  ⋅∇F0  +  v--+ -B--  ⋅μ∇B  ∂v-−  m-  e∥ + v-- ⋅δE  ∂v(3,92)
              0            ∥     0           ∥             ∥         ∥
where ∇≡ ∂∕∂X′|μ,v.

I.3 Parallel momentum equation

Multiplying the linear drift kinetic equation (392) by qv and then integrating over velocity space, we obtain

        ∫                         ∫
∂δj∥ + q  dvv (ve  + v )⋅∇  δf − q  dvv e  ⋅μ ∇B ∂δf-
 ∂t          ∥  ∥∥    D    X           ∥ ∥      ∂v∥
     ∫     (       δB ⊥)           ∫     ( vE   δB ⊥)       ∂F0
= − q  dvv∥  vE +v∥-B0-  ⋅∇XF0  + q  dvv∥  v--+ -B0-  ⋅μ∇B  ∂v--
     ∫     [(        )    ]                 ∥                 ∥
− q-q  dvv∥   e∥ + vD  ⋅δE  ∂F0.                                 (393)
  m                v∥       ∂v∥
Consider the simple case that F0 does not carry current, i.e., F0(X,μ,v) is an even function about v. Then it is obvious that the integration of the terms in red in Eq. (393) are all zero. Among the rest terms, only the following term
     ∫
− q-q  dvv∥[(v∥e∥)⋅δE ]∂F0-1-
  m                   ∂v∥v∥
(394)

explicitly depends on δE. Using dv = 2πBdv, the integration in the above expression can be analytically performed, giving

     ∫
− q-q  dvv∥[(v∥e∥)⋅δE]∂F0-1-
  m                  ∂v∥ v∥
    q2∫               ∂F0
= − m-  2πBdv ∥dμv∥δE∥∂v∥-
     2∫           ∫
= − q-  2πBd μδE∥   v∥∂F0dv∥
    m             (   ∂v∥    )
    q2∫               ∫
= − m   2πBd μδE∥  0−   F0dv∥
  q2
= --δE ∥n0.                                       (395)
  m
Using these results, the parallel momentum equation (393) is written
∂δj∥     q2         ∫                         ∫             ∂δf-
 ∂t   =  m δE ∥n0 − q  dvv∥(v∥e∥ + vD )⋅∇X δf + q dvv ∥e∥ ⋅μ∇B ∂v∥
            ∫     (       )         ∫     (     )
         − q  dvv∥  v∥δB⊥-  ⋅∇F0  +q   dvv∥  δB⊥-  ⋅μ∇B ∂F0-,       (396)
                      B0                     B0        ∂v∥
where the explicit dependence on δE is via the first term q2n0δE∕m, with all the the other terms being explicitly independent of δE (δf and δB implicitly depend on δE).

Equation (396) involve derivatives of δf with respect to space and v and these should be avoided in the particle method whose goal is to avoid directly evaluating these derivatives. Using integration by parts, the terms involving ∂∕∂v can be simplified, yielding

                     ∫                                 ∫
∂δj∥  =   q2δE n − q   dvv (ve  + v )⋅∇  δf − q(e  ⋅∇B )   μδfdv
 ∂t       m   ∥ 0         ∥ ∥ ∥    D    X       ∥     0
            ∫      (  δB-⊥)         ( δB⊥-)       ∫
          − q  dvv∥ v∥ B0   ⋅∇F0 − q   B0   ⋅(∇B0 )   μF0dv,        (397)
Define p0 = mv2F02dv and δp = mv2δf∕2dv, then the above equation is written
                    ∫
∂δj∥      q2-                                           -δp⊥-
 ∂t   =   m δE ∥n0 − q  dvv∥(v∥e∥ + vD )⋅∇X δf − q(e∥ ⋅∇B0 )mB0
            ∫      (  δB⊥ )         ( δB⊥ )       p⊥0
         − q  dvv∥  v∥-B--  ⋅∇F0 − q  B--- ⋅(∇B0 )mB--,          (398)
                        0               0            0
Next, we try to eliminate the spatial gradient of δf by changing the order of integration. The second term on the right-hand side of Eq. (398) is written
   ∫

− q  dvv∥(v∥e∥)⋅∇X δf,
     ∫           2
= − q  2πB0dv∥dμv∥e∥ ⋅∇X δf
               ∫
= − q2πB0e ∥ ⋅∇X  v2∥δfdv∥dμ
             (     ∫         )
= − qB0e ∥ ⋅∇X -1--   mv2∥δfdv
             ( mB0 )
               δp∥-
= − qB0e ∥ ⋅∇X mB0   ,                           (399)
where δp = mv2δfdv. Similarly, the term q dvv(     )
 v∥δB⊥-
    B0⋅∇XF0 is written as
   ∫     (       )
− q  dvv   v δB⊥-  ⋅∇  F
        ∥   ∥ B0     X  0
     ∫           ( 2δB-⊥)
= − q  2πB0dv∥dμ  v∥ B0   ⋅∇XF0
     ( δB  )       ∫
= − q  --⊥- ⋅B0 ∇X   (v2∥F02 πdv∥dμ )
     ( B0  )       [  ∫          ]
= − q  δB⊥- ⋅B  ∇   -1  (mv2F  dv)
       B0      0 X  B       ∥ 0
             ( p∥0-)
= − qδB⊥ ⋅∇X   mB0                                 (400)
where p0 = mv2F0dv. Similarly, the term q dvvvD ⋅∇Xδf can be written as the gradient of moments of δf. Let us work on this. The drift vD is given by
      B0v∥∇ × b      μ
vD =  --ΩB-⋆---v∥ + ΩB-⋆B0 ×∇B0.
           ∥           ∥
(401)

where B = B0(    v∥-       )
 1 + Ωb ⋅∇ × b (refer to my another notes).  Using b ⋅∇× b 0, we obtain B B. Then vD is written

vD = v2∥
Ω-∇× b + μ
Ω-b ×∇B0.

Using this and dv = 2πB0dv, the term q dvvvD ⋅∇Xδf is written as

                                       (                    )
  ∫                       ∫              v2∥        μ-
− q  dvv∥vD ⋅∇X δf  =  − q  2πB0dv∥dμv∥  Ω ∇ × b + Ωb × ∇B0   ⋅∇X δf
                                           ∫                                 ∫
                    =  − q2πB0 1-(∇ × b )⋅∇X  v3∥δfdv∥dμ− q2πB0 1-(b × ∇B0 )⋅∇X   v∥μδfdv∥dμ
                              Ω          (   ∫        )       Ω             (    ∫        )
                    =  − qB 1-(∇ × b) ⋅∇   -1-   v3δfdv  − qB  1(b × ∇B  )⋅∇    1--  v μδfdv  ,
                           0Ω          X  B0    ∥           0Ω        0   X   B0    ∥
                                     (  1 ∫  3    )                  (  1 ∫        )
                    =  − m (∇ × b)⋅∇X  B--  v∥δfdv  − m (b × ∇B0 )⋅∇X   B--  v∥μδfdv  ,  (402)
                                         0                              0
which are the third order moments of δf and may be neglect-able (a guess, not verified). Using the above results, the linear parallel momentum equation is finally written
∂δj∥      e2ne0-              ( δp∥-)            δp⊥-
 ∂t   =    m  δE ∥ + eB0b ⋅∇X  mB0   + e(b ⋅∇B0 )mB0
                    (  p  )    ( δB  )       p
         +e δB⊥ ⋅∇X   --∥0-  + e  --⊥- ⋅(∇B0 )-⊥0-.
                      mB0(   ∫    B0  )       mB0        (   ∫         )
         − m (∇ × b) ⋅∇X   1--  v3δfdv  − m (b× ∇B0 )⋅∇X   -1-  v μδfdv  (403)
                          B0   ∥                         B0    ∥
Define
       ( p   )  ∇B   p
D0 = ∇  --∥0  + ---0 -⊥0-,
        mB0      B0  mB0
(404)

which, for the isotropic case (p0 = p0 = p0), is simplified to

     ∇p
D0 = ---0.
     mB0
(405)

then Eq. (403) is written as

∂δj∥      e2n0
-∂t- =   -m--δE∥ + eδB ⊥ ⋅D0
                  ( δp∥ )            δp
     +   eB0b ⋅∇X   ----  + e(b ⋅∇B0 )--⊥-
                    mB0(   ∫        ) mB0              (   ∫         )
     −   m (∇ × b) ⋅∇X  -1-   v3δfdv  − m (b× ∇B0 )⋅∇X   -1-  v∥μδfdv  .(406)
                       B0    ∥                         B0

I.4 Special case in uniform magnetic field

In the case of uniform magnetic field, the parallel momentum equation (403) is written as

∂δj∥   q-                       δB⊥-
 ∂t  = m qE∥ne0 − qe∥ ⋅∇X (δp∥)− q B0 ⋅∇Xp ∥0.
(407)

I.5 Electron perpendicular flow

Using the gyrokinetic theory and taking the drift-kinetic limit, the perturbed perpendicular electron flow, δVe, is written (see Sec. G or Appendix in Yang Chen’s paper[2])

          ne0         1
ne0δVe ⊥ = B0-δE ×b − eB0b × ∇ δp⊥e
          ◟--◝◜---◞  ◟----◝◜-----◞
           E×B flow     diamagneticflow
(408)

where ne0 is the equilibrium electron number density, δpe is the perturbed perpendicular pressure of electrons.

 

 

I.5.1 Drift kinetic equation

Drift kinetic equation is written

     (                 )
∂f-      ˜       δE-×-b        (  e-       ˜    ) ∂f-
 ∂t +  v∥b + vD +   B0    ⋅∇f +  − m δE∥ − μb ⋅∇B  ∂v∥ = 0,
(409)

where f = f(x,μ,v,t), μ = mv2∕B0 is the magnetic moment, ˜b = b + δB∕B0, b = B0∕B0 is the unit vector along the equilibrium magnetic field, vD = vD(x,μ,v) is the guiding-center drift in the equilibrium magnetic field. δE and δB are the perturbed electric field and magnetic field, respectively.

I.5.2 Parallel momentum equation

Multiplying the drift kinetic equation () by v and then integrating over velocity space, we obtain

∫           ∫   (                 )          ∫
  ∂fev∥            ˜        δE-×-b               (  e-       ˜    ) ∂fe
    ∂t dv +   v∥  v∥b + vD +   B0    ⋅∇fedv +   v∥ − m δE∥ − μ b⋅∇B  ∂v∥dv = 0,
(410)

which can be written as

∂J∥e   ∫   (           δE × e∥)         ∫    (  e             ) ∂fe
∂t--+   v∥  v∥b˜+ vD + --B----  ⋅∇fedv +   v∥ − m-δE ∥ − μ˜b ⋅∇B  ∂v-dv = 0,
                          0                                      ∥
(411)

Using dv = B12πmdv, the last term on the RHS of the above equation is written

∫ ∫   (  e-       ˜    ) ∂fe
    v∥ − m δE∥ − μ b⋅∇B  ∂v∥dv
  ∫ ∫   (  e             ) ∂f    B
=     v∥ − --δE∥ − μ ˜b⋅∇B  --e2π--dv∥dμ
           m ∫ ∫           ∂v∥  m         ∫  ∫
= −-eδE ∥2π B-    v∥∂fe dv∥dμ − (˜b⋅∇B )2πB-   μ   v∥ ∂fedv∥dμ
   m       m       ∂v∥                 m          ∂v∥
    e      B ∫ (     +∞   ∫      )              B  ∫  (     +∞   ∫      )
= −m-δE ∥2π m-    v∥fe|−∞ −   fedv∥ dμ − (˜b⋅∇B )2πm-   μ  v∥fe|−∞ −   fedv∥ dμ
  e      B ∫  ∫                    B ∫  ∫
= --δE∥2π--     fedv∥dμ + (˜b⋅∇B )2π--   μ   fedv∥dμ
  m      m ∫ ∫                    m
= e-δE∥ne +     μ(˜b⋅∇B )fedv                                           (412)
  m
≈ e-δE∥ne
  m
∫ ∫
     v∥(v∥˜b)⋅∇fedv
  ∫ ∫
=      ˜b⋅∇ (v2f )dv
            ∥ e
  ∫ ∫  ˜     2    B-
=      b⋅∇ (v∥fe)2πm dv∥dμ
       (∫ ∫        1     )
= ˜b ⋅∇       v2∥fe2π--dv∥dμ  B0
       (   )      m
= ˜b ⋅∇  -p∥-  B0
       (B0      )
  ˜     p∥0 +-δp∥
= b ⋅∇     B0     B0
       (p∥0)          ( δp∥ )
= ˜b ⋅∇  ---  B0 +b˜⋅∇   --- B0
       (B0 )            B0(   )          (    )
≈ b ⋅∇  p∥0  B0 + δB⊥-⋅∇   p∥0- B0 + b⋅∇   δp∥  B0
        B0        B0       B0             B0
             δB⊥-
≈ b ⋅∇(p∥0)+  B0 ⋅∇ (p∥0)+ b ⋅∇ (δp∥)                       (413)
  δB-⊥
=  B0  ⋅∇(p∥0)+ b⋅∇ (δp∥)
where use has been made of b ⋅∇p0 = 0.
∂-δJe∥     e-       δB-⊥
  ∂t  = − m δE ∥ne − B0  ⋅∇(p∥0)− b⋅∇ (δp∥)
(414)

Using Eq. () in Eq. (), we obtain

                                [                        ]
   e-                            δB-⊥
μ0em δE∥ne + b ⋅∇ × ∇ × δE = − μ0e B0  ⋅∇(pe∥0) +b ⋅∇ (δpe∥)
(415)

 

————–

 

 

                      (                                      )
                          δB⊥-         -q
− b⋅∇ × ∇ × δE = − μ0e − qB0  ⋅∇Xp ∥0 + m qE∥ne0 − qe∥ ⋅∇X (δp∥) .
(416)

 

ddddd

∫ ∫   (                 )
    v   v˜b + v  + δE-×-b  ⋅∇f dv
     ∥  ∥     D     B0       e
  ∫ ∫ (  ˜        δE-×-b)
=      v∥b + vD +   B0    ⋅∇(v∥fe)dv
  ∫ ∫                 ∫ ∫                ∫ ∫  δE× b
=     v∥˜b⋅∇ (v∥fe)dv +     vD ⋅∇ (v∥fe)dv+      ------⋅∇ (v∥fe)dv
  ∫ ∫               ∫ ∫                ∫  ∫     B0
=     ˜b ⋅∇(v2∥fe)dv +     vD ⋅∇ (v∥fe)dv+      δE-×-b ⋅∇ (v∥fe)dv
  ∫ ∫                      ∫ ∫                B0     ∫ ∫
=     ˜b ⋅∇(v2fe)2π B-dvdμ +     vD ⋅∇ (v fe)2πB-dv dμ+      δE-×-b⋅∇ (v fe)2πB-dv dμ
  ∫     (   ∥     m  ∥)     ∫ ∫       ∥     m   ∥      ∫ ∫  B0       ∥    m   ∥
    ˜      2    1-                           B-            δE-×-b           B-
=   b⋅∇   v∥fe2π m dv∥dμ  B +      vD ⋅∇ (v∥fe)2πm dv∥dμ +      B0   ⋅∇(v∥fe)2π m dv∥dμ
      (p∥ )    ∫ ∫              B        ∫  ∫ δE × b           B
= ˜b⋅∇  -B  B +     vD ⋅∇ (v∥fe)2πm-dv∥dμ+      --B--- ⋅∇ (v∥fe)2πm-dv∥dμ
      (p  )    ∫ ∫                               0  ∫ ∫
= ˜b⋅∇  -∥  B +      -1-b× (μ∇B ) ⋅∇ (v∥fe)2πB-dv∥dμ +     -1--b× (mv2∥κ )⋅∇(v∥fe)2π B-dv∥dμ
 ∫  ∫   B           mΩ                    m             m Ω                     m
+     δE-×-b ⋅∇(v∥fe)2π Bdv∥dμ
        B0             m